p62/SQSTM1 regulates cellular oxygen sensing by attenuating PHD3 activity through aggregate sequestration and enhanced degradation.

نویسندگان

  • Krista Rantanen
  • Juha-Pekka Pursiheimo
  • Heidi Högel
  • Petra Miikkulainen
  • Jari Sundström
  • Panu M Jaakkola
چکیده

The hypoxia-inducible factor (HIF) prolyl hydroxylase PHD3 regulates cellular responses to hypoxia. In normoxia the expression of PHD3 is low and it occurs in cytosolic aggregates. SQSTM1/p62 (p62) recruits proteins into cytosolic aggregates, regulates metabolism and protein degradation and is downregulated by hypoxia. Here we show that p62 determines the localization, expression and activity of PHD3. In normoxia PHD3 interacted with p62 in cytosolic aggregates, and p62 was required for PHD3 aggregation that was lost upon transfer to hypoxia, allowing PHD3 to be expressed evenly throughout the cell. In line with this, p62 enhanced the normoxic degradation of PHD3. Depletion of p62 in normoxia led to elevated PHD3 levels, whereas forced p62 expression in hypoxia downregulated PHD3. The loss of p62 resulted in enhanced interaction of PHD3 with HIF-α and reduced HIF-α levels. The data demonstrate p62 is a critical regulator of the hypoxia response and PHD3 activity, by inducing PHD3 aggregation and degradation under normoxia.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation.

Herein, we demonstrate that the ubiquitin-associated (UBA) domain of sequestosome 1/p62 displays a preference for binding K63-polyubiquitinated substrates. Furthermore, the UBA domain of p62 was necessary for aggregate sequestration and cell survival. However, the inhibition of proteasome function compromised survival in cells with aggregates. Mutational analysis of the UBA domain reveals that ...

متن کامل

p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy.

Protein degradation by basal constitutive autophagy is important to avoid accumulation of polyubiquitinated protein aggregates and development of neurodegenerative diseases. The polyubiquitin-binding protein p62/SQSTM1 is degraded by autophagy. It is found in cellular inclusion bodies together with polyubiquitinated proteins and in cytosolic protein aggregates that accumulate in various chronic...

متن کامل

Keap1/Cullin3 Modulates p62/SQSTM1 Activity via UBA Domain Ubiquitination.

p62/SQSTM1 (p62) is a scaffolding protein that facilitates the formation and degradation of ubiquitinated aggregates via its self-interaction and ubiquitin binding domains. The regulation of this process is unclear but may relate to the post-translational modification of p62. In the present study, we find that Keap1/Cullin3 ubiquitinates p62 at lysine 420 within its UBA domain. Substitution of ...

متن کامل

The non-receptor tyrosine kinase Ack1 regulates the fate of activated EGFR by inducing trafficking to the p62/NBR1 pre-autophagosome.

Growth factor signalling regulates multiple cellular functions and its misregulation has been linked to the development and progression of cancer. Ack1 (activated Cdc42-associated kinase 1, also known as TNK2) is a non-receptor tyrosine kinase that has been implicated in trafficking and degradation of epidermal growth factor receptor (EGFR), yet its precise functions remain elusive. In this rep...

متن کامل

p62/SQSTM1 Enhances NOD2-Mediated Signaling and Cytokine Production through Stabilizing NOD2 Oligomerization

NOD2 is a cytosolic pattern-recognition receptor that senses muramyl dipeptide of peptidoglycan that constitutes the bacterial cell wall, and plays an important role in maintaining immunological homeostasis in the intestine. To date, multiple molecules have shown to be involved in regulating NOD2 signaling cascades. p62 (sequestosome-1; SQSTM1) is a multifaceted scaffolding protein involved in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 126 Pt 5  شماره 

صفحات  -

تاریخ انتشار 2013